Comparison of layered cellular manufacturing system design approaches

نویسندگان

  • Bulent Erenay
  • Gürsel A. Süer
  • Jing Huang
  • Sripathi Maddisetty
چکیده

In this study, a mathematical programming approach is proposed to design a layered cellular manufacturing system in highly fluctuated demand environment. A mathematical model is developed to create dedicated, shared and remainder cells with the objective of minimizing the number of cells. In contrast with classical cellular manufacturing systems, in layered cellular systems, some cells can serve to multiple part families. A five-step hierarchical methodology is employed: (1) formation of part families, (2) calculation of expected cell utilizations and demand coverage probabilities, (3) specification cell types as dedicated, shared, and remainder cells, (4) simulation of proposed layered systems to evaluate their performance with respect to average flowtime and work-in-process inventory, and (5) statistical analysis to find the best layered cellular design among alternatives. It is found that designs with higher number of part families tend to have less number of machines. Similar results are also observed with respect to average flowtime and work-in-process inventory measures. The results are also compared with a heuristic approach from the literature. None of the approaches is dominant with respect to all of the performance measures. Mathematical modeling approach performs better in terms of number of machines for most of the alternative designs. However, heuristic approach yields better average flowtime and work-in-process inventory for most of the designs. 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bi-objective Model for Cellular Manufacturing System Considering Worker Skills, Part Priorities,and Equipment Levels

Here, a new mathematical model for cellular manufacturing systems considering three important features of part priority, levels of machine’s technology, and the operator’s skill is developed. Simultaneous consideration of these features provides a more realistic analysis of the problems in cellular manufacturing systems. A model with multiple design features including cell formation, human reso...

متن کامل

Integrative Cell Formation and Layout Design in Cellular Manufacturing Systems

This paper proposes a new integrative view of manufacturing cell formation and both inter-cell and intra-cell layout problems. Cells formation and their popular bi-directional linear layout are determined simultaneously through a Dynamic Programming algorithm (with the objective of minimizing the inter-cell flow cost under a cell size constraint). This Dynamic Programming algorithm is implement...

متن کامل

A method of identifying suitable manufacturing system (Cellular) for automotive sector using Analytical Hierarchy Process

Manufacturing produces real wealth for any country and constitutes the back bone for the service sector. The objective of any organization is to earn profit. Usually the market fixes the selling price of the manufactured components. Unless there is focus on the manufacturing strategy of reducing manufacturing cost, it is very difficult to sustain in this ever competitive world. A suitable manuf...

متن کامل

An archived multi-objective simulated annealing for a dynamic cellular manufacturing system

To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelated decisions involved in the design of a CMS. This paper provides an extensive coverage of important manufacturing features u...

متن کامل

A Comprehensive Mathematical Model for the Design of a Dynamic Cellular Manufacturing System Integrated with Production Planning and Several Manufacturing Attributes

    Dynamic cellular manufacturing systems,   Mixed-integer non-linear programming,   Production planning, Manufacturing attributes   This paper presents a novel mixed-integer non-linear programming model for the design of a dynamic cellular manufacturing system (DCMS) based on production planning (PP) decisions and several manufacturing attributes. Such an integrated DCMS model with an extensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Industrial Engineering

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2015